Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Bioelectrochemistry ; 157: 108679, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471411

RESUMEN

The primary objective of this study is to elucidate the synergistic effect of an exogenous redox mediator and carbon starvation on the microbiologically influenced corrosion (MIC) of metal nickel (Ni) by nitrate reducing Pseudomonas aeruginosa. Carbon source (CS) starvation markedly accelerates Ni MIC by P. aeruginosa. Moreover, the addition of exogenous riboflavin significantly decreases the corrosion resistance of Ni. The MIC rate of Ni (based on corrosion loss volume) is ranked as: 10 % CS level + riboflavin > 100 % CS level + riboflavin > 10 % CS level > 100 % CS level. Notably, starved P. aeruginosa biofilm demonstrates greater aggressiveness in contributing to the initiation of surface pitting on Ni. Under CS deficiency (10 % CS level) in the presence of riboflavin, the deepest Ni pits reach a maximum depth of 11.2 µm, and the corrosion current density (icorr) peak at approximately 1.35 × 10-5 A·cm-2, representing a 2.6-fold increase compared to the full-strength media (5.25 × 10-6 A·cm-2). For the 10 % CS and 100 % CS media, the addition of exogenous riboflavin increases the Ni MIC rate by 3.5-fold and 2.9-fold, respectively. Riboflavin has been found to significantly accelerate corrosion, with its augmentation effect on Ni MIC increasing as the CS level decreases. Overall, riboflavin promotes electron transfer from Ni to P. aeruginosa, thus accelerating Ni MIC.


Asunto(s)
Níquel , Pseudomonas aeruginosa , Corrosión , Carbono , Riboflavina/farmacología , Biopelículas
2.
Langmuir ; 40(13): 7095-7105, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511863

RESUMEN

Conductive inks are one of the most important functional materials for printed flexible electronic devices, and their properties determine the methods of subsequent patterning and metallization. In comparison with copper nanoparticle or nanowire inks, copper particle-free inks employing copper(II) formate (Cuf) as a precursor have attracted the interest of researchers due to their flexibility in preparation, excellent stability, and lower conversion temperature. Alkanolamines can provide Cuf with excellent solubility in alcohols while being less toxic and having a certain reducibility, making them preferable ligands in comparison with aliphatic amines and pyridine. However, there have been few studies on the effects of the alkanolamine types on the performance of Cuf inks. Also, the decomposition mechanism of copper-alkanolamine complex inks is not clear. In this work, different kinds of alkanolamines were chosen as ligands to formulate Cuf inks to address the mentioned issues. The influences of amine types on the stability, wettability, thermal decomposition behavior, and electrical performance of the formulated Cuf particle-free inks were investigated in detail. The results show that the utilization of alkanolamines could provide Cuf with excellent solubility in alcohols, resulting in an ink with good stability and favorable wetting properties. The thermal decomposition temperature and electrical performance of the formulated copper ink are largely dependent on the amine used. When amines with a longer carbon chain and more branches were utilized to prepare the ink, a decreased decomposition temperature was observed on the derived inks because of the steric hindrance effect. Copper films with good morphology and conductivity could be obtained at low temperatures by selecting the appropriate alkanolamine. Copper particle-free conductive ink from 2-amino-2-methyl-1-propanol demonstrated better morphology and electrical performance (16.09 µΩ·cm) and was successfully used for conductive circuits by direct-writing.

3.
BMJ Med ; 3(1): e000771, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464392

RESUMEN

Objectives: To estimate the association between the transition to daylight saving time and the risks of all cause and cause specific mortality in the US. Design: Nationwide time series observational study based on weekly data. Setting: US state level mortality data from the National Center for Health Statistics, with death counts from 50 US states and the District of Columbia, from the start of 2015 to the end of 2019. Population: 13 912 837 reported deaths in the US. Main outcome measures: Weekly counts of mortality for any cause, and for Alzheimer's disease, dementia, circulatory diseases, malignant neoplasms, and respiratory diseases. Results: During the study period, 13 912 837 deaths were reported. The analysis found no evidence of an association between the transition to spring daylight saving time (when clocks are set forward by one hour on the second Sunday of March) and the risk of all cause mortality during the first eight weeks after the transition (rate ratio 1.003, 95% confidence interval 0.987 to 1.020). Autumn daylight saving time is defined in this study as the time when the clocks are set back by one hour (ie, return to standard time) on the first Sunday of November. Evidence indicating a substantial decrease in the risk of all cause mortality during the first eight weeks after the transition to autumn daylight saving time (0.974, 0.958 to 0.990). Overall, when considering the transition to both spring and autumn daylight saving time, no evidence of any effect of daylight saving time on all cause mortality was found (0.988, 0.972 to 1.005). These patterns of changes in mortality rates associated with transition to daylight saving time were consistent for Alzheimer's disease, dementia, circulatory diseases, malignant neoplasms, and respiratory diseases. The protective effect of the transition to autumn daylight saving time on the risk of mortality was more pronounced in elderly people aged ≥75 years, in the non-Hispanic white population, and in those residing in the eastern time zone. Conclusions: In this study, transition to daylight saving time was found to affect mortality patterns in the US, but an association with additional deaths overall was not found. These findings might inform the ongoing debate on the policy of shifting daylight saving time.

4.
Gen Physiol Biophys ; 43(2): 85-102, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38477602

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. Chronic activation of endoplasmic reticulum stress (ERS) in hepatocytes may promote the development of NAFLD, yet endoplasmic reticulum stress-related genes (ERSGs) have not been studied in NAFLD. Our aim is to study the relationship between ERSGs and the immune microenvironment of NAFLD patients and to construct predictive models. We screened 48 endoplasmic reticulum stress-related differentially expressed genes (ERSR-DEGs) using data from two GEO datasets and the GeneCards database. Enrichment analysis revealed that ERSR-DEGs are closely associated with immune-related pathways and functions. The immune infiltration profile of NAFLD was obtained by single sample gene set enrichment analysis (ssGSEA). There were significant differences in immune cell infiltration and immune function between NAFLD group and control group. Using 113 NAFLD samples, we explored two molecular clusters based on ERSR-DEGs. A five-gene SVM model was selected as the best machine learning model, and a nomogram based on five-gene SVM model showed good predictive efficiency. The mRNA expression levels of POR, PPP1R15A, FOS and FAS were significantly different between NAFLD mice and healthy mice. In conclusion, ERS is closely associated with the development of NAFLD. We established a promising and SVM-based predictive model to assess the risk of disease in patients with ERS subtypes and NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés del Retículo Endoplásmico/genética , Hepatocitos
5.
Int J Biol Sci ; 20(5): 1905-1926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481802

RESUMEN

Increasing evidence suggests that autophagy plays a major role during renal fibrosis. Transcription factor EB (TFEB) is a critical regulator of autophagy- and lysosome-related gene transcription. However, the pathophysiological roles of TFEB in renal fibrosis and fine-tuned mechanisms by which TFEB regulates fibrosis remain largely unknown. Here, we found that TFEB was downregulated in unilateral ureteral obstruction (UUO)-induced human and mouse fibrotic kidneys, and kidney-specific TFEB overexpression using recombinant AAV serotype 9 (rAAV9)-TFEB in UUO mice alleviated renal fibrosis pathogenesis. Mechanically, we found that TFEB's prevention of extracellular matrix (ECM) deposition depended on autophagic flux integrity and its subsequent blockade of G2/M arrest in tubular cells, rather than the autophagosome synthesis. In addition, we together RNA-seq with CUT&Tag analysis to determine the TFEB targeted gene ATP6V0C, and revealed that TFEB was directly bound to the ATP6V0C promoter only at specific site to promote its expression through CUT&Run-qPCR and luciferase reporter assay. Interestingly, TFEB induced autophagic flux integrity, mainly dependent on scaffold protein ATP6V0C-mediated autophagosome-lysosome fusion by bridging with STX17 and VAMP8 (major SNARE complex) by co-immunoprecipitation analysis, rather than its mediated lysosomal acidification and degradation function. Moreover, we further investigated the underlying mechanism behind the low expression of TEFB in UUO-induced renal fibrosis, and clearly revealed that TFEB suppression in fibrotic kidney was due to DNMT3a-associated TFEB promoter hypermethylation by utilizing methylation specific PCR (MSP) and bisulfite-sequencing PCR (BSP), which could be effectively recovered by 5-Aza-2'-deoxycytidine (5A-za) to alleviate renal fibrosis pathogenesis. These findings reveal for the first time that impaired TFEB-mediated autophagosome-lysosome fusion disorder, tubular cell G2/M arrest and renal fibrosis appear to be sequentially linked in UUO-induced renal fibrosis and suggest that DNMT3a/TFEB/ATP6V0C may serve as potential therapeutic targets to prevent renal fibrosis.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Ratones , Apoptosis , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Tumoral , Fibrosis , Puntos de Control de la Fase G2 del Ciclo Celular , Enfermedades Renales/metabolismo , Lisosomas/metabolismo , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacología , Obstrucción Ureteral/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/farmacología
6.
Angew Chem Int Ed Engl ; 63(15): e202319758, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38353649

RESUMEN

Fluorinated small molecules are commonly used in functional small-molecule chemistry, and N-difluoromethyl (N-CF2H) compounds are particularly intriguing due to their unique and unexplored physiochemical properties. However, despite limited progress, a general methodological approach to the synthesis of N-CF2H compounds remains elusive. Here, guided by computation, we present a simple and practical protocol to access N-CF2H amides and related carbonyl derivatives. The protocol involves a one-pot conversion of thioformamides through desulfurization-fluorination and acylation, providing N-difluoromethylcarbamoyl fluoride building blocks that can be further diversified to a variety of unexplored N-CF2H carbonyl compounds with rich functionality. Additionally, preliminary studies on their properties and stability showcased their potential application in pharmaceuticals and agrochemicals.

7.
Ecol Appl ; 34(3): e2944, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38379442

RESUMEN

In China, the Grain for Green Program (GGP) is an ambitious project to convert croplands into natural vegetation, but exactly how changes in vegetation translate into changes in soil organic carbon remains less clear. Here we conducted a meta-analysis using 734 observations to explore the effects of land recovery on soil organic carbon and nutrients in four provinces in Southwest China. Following GGP, the soil organic carbon content (SOCc) and soil organic carbon stock (SOCs) increased by 33.73% and 22.39%, respectively, compared with the surrounding croplands. Similarly, soil nitrogen increased, while phosphorus decreased. Outcomes were heterogeneous, but depended on variations in soil and environmental characteristics. Both the regional land use and cover change indicated by the landscape type transfer matrix and net primary production from 2000 to 2020 further confirmed that the GGP promoted the forest area and regional mean net primary production. Our findings suggest that the GGP could enhance soil and vegetation carbon sequestration in Southwest China and help to develop a carbon-neutral strategy.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Bosques , Grano Comestible , China
8.
Heliyon ; 10(3): e25342, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356520

RESUMEN

The construction system's complexity can generate substantial uncertainties during emergencies. Resilience, as a new perspective on emergency response, can significantly mitigate these challenges. This paper introduces an innovative model to assess the resilience of construction emergency response processes utilizing a scaffold collapse scenario as a demonstrative case study. Grounded in resilience engineering, our model integrates the merits of the Functional Resonance Analysis Method (FRAM) with the probabilistic strengths of Bayesian Networks (BNs). The process commences with FRAM, mapping out the emergency response in qualitative terms by identifying functions, variabilities, and couplings. This culminates in a topological network which serves as a foundational structure for the directed Complex Network (CN) and the BN model. Thereafter, the Delphi method and the modified K-shell (MKS) decomposition algorithm guide the computation of prior probabilities for root nodes and the conditional probability table within the BN model. Subsequently, the BN model is subjected to a simulation using the AgenaRisk software, executing both forward and backward propagation as well as sensitivity analyses. Our findings pinpoint "Intersectoral Coordination and Linkage" as the most crucial function, with rapidity being the most sensitive aspect influencing resilience during a scaffold collapse emergency response process.

9.
Front Med (Lausanne) ; 11: 1327882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327705

RESUMEN

Purpose: Laparoscopic partial nephrectomy (LPN) remains the most commonly used measure for treating localized renal cell cancer (RCC) with an increasing incidence of RCC ever since the 1990s. This study aimed to identify risk factors that affect the postoperative time of drainage and total drainage volume after LPN. Method: The clinical data of 612 RCC patients who received LPN from January 2012 to December 2022 in our hospital, including the postoperative drainage time and total drainage volume, were retrospectively analyzed. Univariable and multivariable linear regression and correlation analyses were used to identify the correlations between 21 factors, which include gender, age, history of alcohol consumption, family history of RCC, body weight, body mass index (BMI), and operation time, postoperative drainage time, and total drainage volume. Results: The mean time of drainage was 3.52 ± 0.71 days (range: 2 to 8 days), with an average total drainage volume of 259.83 ± 72.64 mL (range: 50 to 620 mL). Both univariable and multivariable linear regression analyses revealed several statistically significant associations. Gender (p = 0.04), age (p = 0.008), smoking history (p < 0.001), diabetes (p = 0.032), operation time (p = 0.014), and BMI (p = 0.023) were identified as significant factors associated with the time of drainage. On the other hand, age (p = 0.008), smoking history (p < 0.001), diabetes (p = 0.006), and BMI (p = 0.016) emerged as independent risk factors influencing the total drainage volume. Conclusion: The duration of postoperative drainage was found to be associated with gender, age, smoking history, diabetes, operation time, and BMI. In contrast, the total drainage volume was primarily influenced by age, smoking history, diabetes, and high BMI following LPN. For patients with these conditions, meticulous attention to hemostasis and bleeding control is crucial during the perioperative period.

10.
World J Gastrointest Endosc ; 16(1): 18-28, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38313462

RESUMEN

BACKGROUND: The incidence and mortality rate of colorectal cancer progressively increase with age and become particularly prominent after the age of 50 years. Therefore, the population that is ≥ 50 years in age requires long-term and regular colonoscopies. Uncomfortable bowel preparation is the main reason preventing patients from undergoing regular colonoscopies. The standard bowel preparation regimen of 4-L polyethylene glycol (PEG) is effective but poorly tolerated. AIM: To investigate an effective and comfortable bowel preparation regimen for hospitalized patients ≥ 50 years in age. METHODS: Patients were randomly assigned to group 1 (2-L PEG + 30-mL lactulose + a low-residue diet) or group 2 (4-L PEG). Adequate bowel preparation was defined as a Boston bowel preparation scale (BBPS) score of ≥ 6, with a score of ≥ 2 for each segment. Non-inferiority was prespecified with a margin of 10%. Additionally, the degree of comfort was assessed based on the comfort questionnaire. RESULTS: The proportion of patients with a BBPS score of ≥ 6 in group 1 was not significantly different from that in group 2, as demonstrated by intention-to-treat (91.2% vs 91.0%, P = 0.953) and per-protocol (91.8% vs 91.0%, P = 0.802) analyses. Furthermore, in patients ≥ 75 years in age, the proportion of BBPS scores of ≥ 6 in group 1 was not significantly different from that in group 2 (90.9% vs 97.0%, P = 0.716). Group 1 had higher comfort scores (8.85 ± 1.162 vs 7.59 ± 1.735, P < 0.001), longer sleep duration (6.86 ± 1.204 h vs 5.80 ± 1.730 h, P < 0.001), and fewer awakenings (1.42 ± 1.183 vs 2.04 ± 1.835, P = 0.026) than group 2. CONCLUSION: For hospitalized patients ≥ 50 years in age, the bowel preparation regimen comprising 2-L PEG + 30-mL lactulose + a low-residue diet produced a cleanse that was as effective as the 4-L PEG regimen and even provided better comfort.

11.
Nat Commun ; 15(1): 1494, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374305

RESUMEN

Mechanoelectrical energy conversion is a potential solution for the power supply of miniaturized wearable and implantable systems; yet it remains challenging due to limited current output when exploiting low-frequency motions with soft devices. We report a design of a hydrogel generator with mechanoionic current generation amplified by orders of magnitudes with engineered structural and chemical asymmetry. Under compressive loading, relief structures in the hydrogel intensify net ion fluxes induced by deformation gradient, which synergize with asymmetric ion adsorption characteristics of the electrodes and distinct diffusivity of cations and anions in the hydrogel matrix. This engineered mechanoionic process can yield 4 mA (5.5 A m-2) of peak current under cyclic compression of 80 kPa applied at 0.1 Hz, with the transferred charge reaching up to 916 mC m-2 per cycle. The high current output of this miniaturized hydrogel generator is beneficial for the powering of wearable devices, as exemplified by a controlled drug-releasing system for wound healing. The demonstrated mechanisms for amplifying mechanoionic effect will enable further designs for a variety of self-powered biomedical systems.

12.
Appl Microbiol Biotechnol ; 108(1): 68, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194135

RESUMEN

Heme is an iron-containing porphyrin compound widely used in the fields of healthcare, food, and medicine. Compared to animal blood extraction, it is more advantageous to develop a microbial cell factory to produce heme. However, heme biosynthesis in microorganisms is tightly regulated, and its accumulation is highly cytotoxic. The current review describes the biosynthetic pathway of free heme, its fermentation production using different engineered bacteria constructed by metabolic engineering, and strategies for further improving heme synthesis. Heme synthetic pathway in Bacillus subtilis was modified utilizing genome-editing technology, resulting in significantly improved heme synthesis and secretion abilities. This technique avoided the use of multiple antibiotics and enhanced the genetic stability of strain. Hence, engineered B. subtilis could be an attractive cell factory for heme production. Further studies should be performed to enhance the expression of heme synthetic module and optimize the expression of heme exporter and fermentation processes, such as iron supply. KEY POINTS: • Strengthening the heme biosynthetic pathway can significantly increase heme production. • Heme exporter overexpression helps to promote heme secretion, thereby further promoting excessive heme synthesis. • Engineered B. subtilis is an attractive alternative for heme production.


Asunto(s)
Hemo , Porfirinas , Animales , Fermentación , Antibacterianos , Hierro
13.
J Cell Mol Med ; 28(3): e18091, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169083

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease worldwide. Cuproptosis has recently been reported as a form of cell death that appears to drive the progression of a variety of diseases. This study aimed to explore cuproptosis-related molecular clusters and construct a prediction model. The gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. The associations between molecular clusters of cuproptosis-related genes and immune cell infiltration were investigated using 50 NAFLD samples. Furthermore, cluster-specific differentially expressed genes were identified by the WGCNA algorithm. External datasets were used to verify and screen feature genes, and nomograms, calibration curves and decision curve analysis (DCA) were performed to verify the performance of the prediction model. Finally, a NAFLD-diet mouse model was constructed to further verify the predictive analysis, thus providing new insights into the prediction of NAFLD clusters and risks. The role of cuproptosis in the development of non-alcoholic fatty liver disease and immune cell infiltration was explored. Non-alcoholic fatty liver disease was divided into two cuproptosis-related molecular clusters by unsupervised clustering. Three characteristic genes (ENO3, SLC16A1 and LEPR) were selected by machine learning and external data set validation. In addition, the accuracy of the nomogram, calibration curve and decision curve analysis in predicting NAFLD clusters was also verified. Further animal and cell experiments confirmed the difference in their expression in the NAFLD mouse model and Mouse hepatocyte cell line. The present study explored the relationship between non-alcoholic fatty liver disease and cuproptosis, providing new ideas and targets for individual treatment of the disease.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Algoritmos , Calibración , Muerte Celular , Línea Celular , Modelos Animales de Enfermedad , Apoptosis
14.
Small ; : e2311029, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38152924

RESUMEN

Vanadium-based cathode materials have attracted great attention in aqueous zinc-ion batteries (AZIBs). However, the inferior ion transport and cyclic stability due to the strong Coulomb interaction between Zn2+ and the lattice limit their further application. In this work, CO2 molecules are in situ embedded in the interlayer structure of NH4 V4 O10 by decomposing excess H2 C2 O4 ·2H2 O in the main framework, obtaining an ion-molecule co-confining NH4 V4 O10 for AZIB cathode material. The introduced CO2 molecules expanded the interlayer spacing of NH4 V4 O10 , broadened the diffusion channel of Zn2+ , and stabilized the structure of NH4 V4 O10 as the interlayer pillars together with NH 4 + ${\mathrm{NH}}_4^ + $ , which effectively improved the Zn2+ diffusion kinetics and cycle stability of the electrode. In addition, the binding between NH 4 + ${\mathrm{NH}}_4^ + $ and the host framework is stabilized via hydrogen bonds with CO2 molecules. NVO-CO2 -0.8 exhibited excellent specific capacity (451.1 mAh g-1 at 2 A g-1 ), cycle stability (214.0 mAh g-1 at 10 A g-1 after 1000 cycles) and rate performance. This work provides new ideas and approaches for optimizing vanadium-based materials with high-performance AZIBs.

15.
Vaccine ; 41(49): 7419-7427, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37953098

RESUMEN

OBJECTIVE: To assess the intention of influenza vaccination during the Omicron pandemic of COVID-19 via a structured cross-sectional survey. METHODS: A cross-sectional study was conducted in 1,813 Hong Kong quota-sampled adults between March and September 2022, when Hong Kong was experiencing an outbreak of Omicron infections. Questions included self-reported medical and vaccination history, and perceptions and intention of influenza vaccine. A multiple logistic regression analysis was conducted to identify significant factors associated with the vaccination intention. RESULTS: Of the 1,813 participants, 25.8% (95% CI: 23.8%-27.8%) perceived positive impact of COVID-19 pandemic on their influenza vaccine willingness, which was more than two times the proportion of those who feel less likely to take influenza vaccine (11.5%, 95% CI: 10.1%-13.1%). Compared with males, females were less likely to receive influenza vaccine for 2022-23 influenza seasons (OR = 0.71, 95% CI: 0.52-0.95, p = 0.023) and had less impact on their influenza vaccine willingness (OR = 0.76, 95% CI: 0.59-0.99, p = 0.043). Participants older than 60 years old were related to a less positive impact compared with the youngers (OR = 0.53, 95% CI: 0.30-0.93, p = 0.028). Participants with experience of influenza vaccine uptake also showed a higher intention of seasonal influenza vaccination. CONCLUSION: The public intention of influenza vaccine has been raised in Hong Kong. With the identified subgroups (e.g., female and elderly) and reasons for being reluctant to the influenza vaccination, policy makers should rectify common misperceptions in order to increase influenza vaccination coverage at the post COVID-19 phase.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Adulto , Masculino , Humanos , Femenino , Anciano , Persona de Mediana Edad , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Estudios Transversales , Intención , Estaciones del Año , COVID-19/epidemiología , COVID-19/prevención & control , Hong Kong/epidemiología , Pandemias/prevención & control , Aceptación de la Atención de Salud , Encuestas y Cuestionarios , Vacunación , Brotes de Enfermedades
16.
Cell Mol Biol Lett ; 28(1): 95, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007415

RESUMEN

BACKGROUND: Long-term exposure of humans to air pollution is associated with an increasing risk of cardiovascular diseases (CVDs). Astaxanthin (AST), a naturally occurring red carotenoid pigment, was proved to have multiple health benefits. However, whether or not AST also exerts a protective effect on fine particulate matter (PM2.5)-induced cardiomyocyte damage and its underlying mechanisms remain unclear. METHODS: In vitro experiments, the H9C2 cells were subjected to pretreatment with varying concentrations of AST, and then cardiomyocyte injury model induced by PM2.5 was established. The cell viability and the ferroptosis-related proteins expression were measured in different groups. In vivo experiments, the rats were pretreated with different concentrations of AST for 21 days. Subsequently, a rat model of myocardial PM2.5 injury was established by intratracheal instillation every other day for 1 week. The effects of AST on myocardial tissue injury caused by PM2.5 indicating by histological, serum, and protein analyses were examined. RESULTS: AST significantly ameliorated PM2.5-induced myocardial tissue injury, inflammatory cell infiltration, the release of inflammatory factors, and cardiomyocyte H9C2 cell damage. Mechanistically, AST pretreatment increased the expression of SLC7A11, GPX4 and down-regulated the expression of TfR1, FTL and FTH1 in vitro and in vivo. CONCLUSIONS: Our study suggest that ferroptosis plays a significant role in the pathogenesis of cardiomyocyte injury induced by PM2.5. AST may serve as a potential therapeutic agent for mitigating cardiomyocyte injury caused by PM2.5 through the inhibition of ferroptosis.


Asunto(s)
Ferroptosis , Miocitos Cardíacos , Humanos , Animales , Ratas , Xantófilas/farmacología , Xantófilas/uso terapéutico , Material Particulado/toxicidad
17.
Chem Commun (Camb) ; 59(91): 13535-13550, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37877745

RESUMEN

High entropy oxides (HEOs) have gained significant attention in multiple research fields, particularly in reversible energy storage. HEOs with rock-salt and spinel structures have shown excellent reversible capacity and longer cycle spans compared to traditional conversion-type anodes. However, research on HEOs and their electrochemical performance remains at an early stage. In this highlight, we review recent progress on HEO materials in the field of lithium-ion batteries (LIBs). Firstly, we introduce the synthesis methods of HEOs and some factors that affect the morphology and electrochemical properties of the synthesized materials. We then elaborate on the structural evolution of HEOs with rock-salt and spinel structures in lithium energy storage and summarize the relationship between morphology, pseudocapacitance effect, oxygen vacancy, and electrochemical performance. In the end, we give the challenges of HEO anodes for LIBs and present our opinions on how to guide the further development of HEOs for advanced anodes.

18.
Respir Res ; 24(1): 246, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828565

RESUMEN

BACKGROUND: Although COVID-19 vaccines and their booster regimens protect against symptomatic infections and severe outcomes, there is limited evidence about their protection against asymptomatic and symptomatic infections in real-world settings, particularly when considering that the majority of SARS-CoV-2 Omicron infections were asymptomatic. We aimed to assess the effectiveness of the booster dose of inactivated vaccines in mainland China, i.e., Sinopharm (BBIBP-CorV) and Sinovac (CoronaVac), against Omicron infection in an Omicron BA.5 seeded epidemic. METHODS: Based on an infection-naive but highly vaccinated population in Urumqi, China, the study cohort comprised all 37,628 adults who had a contact history with individuals having SARS-CoV-2 infections, i.e., close contacts, between August 1 and September 7, 2022. To actively detect SARS-CoV-2 infections, RT-PCR tests were performed by local authorities on a daily basis for all close contacts, and a testing-positive status was considered a laboratory-confirmed outcome. The cohort of close contacts was matched at a ratio of 1:5 with the fully vaccinated (i.e., 2 doses) and booster vaccinated groups (i.e., 3 doses) according to sex, age strata, calendar date, and contact settings. Multivariate conditional logistic regression models were adopted to estimate the marginal effectiveness of the booster dose against Omicron BA.5 infection after adjusting for confounding variables. Subgroup analyses were performed to assess vaccine effectiveness (VE) in different strata of sex, age, the time lag from the last vaccine dose to exposure, and the vaccination status of the source case. Kaplan-Meier curves were employed to visualize the follow-up process and testing outcomes among different subgroups of the matched cohort. FINDINGS: Before matching, 37,099 adult close contacts were eligible for cohort enrolment. After matching, the 2-dose and 3-dose groups included 3317 and 16,051 contacts, and the proportions with Omicron infections were 1.03% and 0.62% among contacts in the 2-dose and 3-dose groups, respectively. We estimated that the adjusted effectiveness of the inactivated booster vaccine versus 2 doses against Omicron infection was 35.5% (95% CI 2.0, 57.5). The booster dose provided a higher level of protection, with an effectiveness of 60.2% (95% CI 22.8, 79.5) for 15-180 days after vaccination, but this VE decreased to 35.0% (95% CI 2.8, 56.5) after 180 days. Evidence for the protection of the booster dose was detected among young adults aged 18-39 years, but was not detected for those aged 40 years or older. INTERPRETATION: The receipt of the inactivated vaccine booster dose was associated with a significantly lower Omicron infection risk, and our findings confirmed the vaccine effectiveness (VE) of booster doses against Omicron BA.5 variants. Given the rapid evolution of SARS-CoV-2, we highlight the importance of continuously monitoring the protective performance of vaccines against the genetic variants of SARS-CoV-2, regardless of existing vaccine coverage.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto Joven , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Estudios de Cohortes , SARS-CoV-2
19.
BMC Gastroenterol ; 23(1): 310, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704966

RESUMEN

OBJECTIVES: To appraise effective predictors for infection in patients with decompensated cirrhosis (DC) by using XGBoost algorithm in a retrospective case-control study. METHODS: Clinical data were retrospectively collected from 6,648 patients with DC admitted to five tertiary hospitals. Indicators with significant differences were determined by univariate analysis and least absolute contraction and selection operator (LASSO) regression. Further multi-tree extreme gradient boosting (XGBoost) machine learning-based model was used to rank importance of features selected from LASSO and subsequently constructed infection risk prediction model with simple-tree XGBoost model. Finally, the simple-tree XGBoost model is compared with the traditional logical regression (LR) model. Performances of models were evaluated by area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity. RESULTS: Six features, including total bilirubin, blood sodium, albumin, prothrombin activity, white blood cell count, and neutrophils to lymphocytes ratio were selected as predictors for infection in patients with DC. Simple-tree XGBoost model conducted by these features can predict infection risk accurately with an AUROC of 0.971, sensitivity of 0.915, and specificity of 0.900 in training set. The performance of simple-tree XGBoost model is better than that of traditional LR model in training set, internal verification set, and external feature set (P < 0.001). CONCLUSIONS: The simple-tree XGBoost predictive model developed based on a minimal amount of clinical data available to DC patients with restricted medical resources could help primary healthcare practitioners promptly identify potential infection.


Asunto(s)
Albúminas , Algoritmos , Humanos , Estudios Retrospectivos , Estudios de Casos y Controles , Área Bajo la Curva
20.
Front Genet ; 14: 1251999, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745847

RESUMEN

Objective: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the world, and its pathogenesis is not fully understood. Disulfidptosis is the most recently reported form of cell death and may be associated with NAFLD progression. Our study aimed to explore the molecular clusters associated with disulfidptosis in NAFLD and to construct a predictive model. Methods: First, we analyzed the expression profile of the disulfidptosis regulators and immune characteristics in NAFLD. Using 104 NAFLD samples, we investigated molecular clusters based on differentially expressed disulfidptosis-related genes, along with the related immune cell infiltration. Cluster-specific differentially expressed genes were then identified by using the WGCNA method. We also evaluated the performance of four machine learning models before choosing the optimal machine model for diagnosis. Nomogram, calibration curves, decision curve analysis, and external datasets were used to confirm the prediction effectiveness. Finally, the expression levels of the biomarkers were assessed in a mouse model of a high-fat diet. Results: Two differentially expressed DRGs were identified between healthy and NAFLD patients. We revealed the expression profile of DRGs in NAFLD and the correlation with 22 immune cells. In NAFLD, two clusters of molecules connected to disulfidptosis were defined. Significant immunological heterogeneity was shown by immune infiltration analysis among the various clusters. A significant amount of immunological infiltration was seen in Cluster 1. Functional analysis revealed that Cluster 1 differentially expressed genes were strongly linked to energy metabolism and immune control. The highest discriminatory performance was demonstrated by the SVM model, which had a higher area under the curve, relatively small residual and root mean square errors. Nomograms, calibration curves, and decision curve analyses were used to show how accurate the prediction of NAFLD was. Further analysis revealed that the expression of three model-related genes was significantly associated with the level of multiple immune cells. In animal experiments, the expression trends of DDO, FRK and TMEM19 were consistent with the results of bioinformatics analysis. Conclusion: This study systematically elucidated the complex relationship between disulfidptosis and NAFLD and developed a promising predictive model to assess the risk of disease in patients with disulfidptosis subtypes and NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...